Liouville’s theorem for generalized harmonic function
نویسندگان
چکیده
منابع مشابه
GENERALIZED PRINCIPAL IDEAL THEOREM FOR MODULES
The Generalized Principal Ideal Theorem is one of the cornerstones of dimension theory for Noetherian rings. For an R-module M, we identify certain submodules of M that play a role analogous to that of prime ideals in the ring R. Using this definition, we extend the Generalized Principal Ideal Theorem to modules.
متن کاملOn generalized Hermite-Hadamard inequality for generalized convex function
In this paper, a new inequality for generalized convex functions which is related to the left side of generalized Hermite-Hadamard type inequality is obtained. Some applications for some generalized special means are also given.
متن کاملGENERALIZATION OF TITCHMARSH'S THEOREM FOR THE GENERALIZED FOURIER-BESSEL TRANSFORM
In this paper, using a generalized translation operator, we prove theestimates for the generalized Fourier-Bessel transform in the space L2 on certainclasses of functions.
متن کاملNewton's method for generalized equations: a sequential implicit function theorem
In an extension of Newton’s method to generalized equations, we carry further the implicit function theorem paradigm and place it in the framework of a mapping acting from the parameter and the starting point to the set of all associated sequences of Newton’s iterates as elements of a sequence space. An inverse function version of this result shows that the strong regularity of the mapping asso...
متن کاملgeneralized principal ideal theorem for modules
the generalized principal ideal theorem is one of the cornerstones of dimension theory for noetherian rings. for an r-module m, we identify certain submodules of m that play a role analogous to that of prime ideals in the ring r. using this definition, we extend the generalized principal ideal theorem to modules.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Analysis and Mathematical Physics
سال: 2020
ISSN: 1664-2368,1664-235X
DOI: 10.1007/s13324-020-00434-8